傳統(tǒng)AI大模型訓(xùn)練依賴云端算力,但高昂的帶寬成本和隱私泄露風(fēng)險(xiǎn)成為規(guī)?;瘧?yīng)用的瓶頸。倍聯(lián)德通過“聯(lián)邦學(xué)習(xí)+遷移學(xué)習(xí)”技術(shù),重新定義了云端訓(xùn)練的邊界:在醫(yī)療領(lǐng)域,倍聯(lián)德為某三甲醫(yī)院部署的聯(lián)邦學(xué)習(xí)平臺(tái),支持10家分院在本地訓(xùn)練醫(yī)療影像分析模型,只共享模型參數(shù)而非原始數(shù)據(jù)。這一方案使肺病早期篩查準(zhǔn)確率提升至96%,同時(shí)滿足《個(gè)人信息保護(hù)法》對醫(yī)療數(shù)據(jù)隱私的要求。技術(shù)實(shí)現(xiàn)上,平臺(tái)采用差分隱私技術(shù)對參數(shù)進(jìn)行加密,并通過安全聚合算法確保云端無法反推原始數(shù)據(jù)。自動(dòng)駕駛車輛依賴邊緣計(jì)算實(shí)現(xiàn)本地化路徑規(guī)劃和障礙物識別,確保行車安全。廣東自動(dòng)駕駛邊緣計(jì)算解決方案

在能源管理領(lǐng)域,其R500Q液冷服務(wù)器支持50kW單機(jī)柜功率密度,可連續(xù)365天無故障運(yùn)行。在武漢某光伏電站的部署中,系統(tǒng)通過實(shí)時(shí)分析電池板溫度、光照強(qiáng)度等數(shù)據(jù),使發(fā)電效率提升8%,年減少碳排放1.2萬噸。倍聯(lián)德積極構(gòu)建開放生態(tài),與華為、中國移動(dòng)等企業(yè)建立深度合作。在江蘇某智慧園區(qū)項(xiàng)目中,雙方聯(lián)合部署的MEC專網(wǎng)實(shí)現(xiàn)三大創(chuàng)新:網(wǎng)絡(luò)切片隔離:通過5G硬切片技術(shù),將園區(qū)監(jiān)控、工業(yè)控制、辦公上網(wǎng)等業(yè)務(wù)分流至不同虛擬網(wǎng)絡(luò),確保關(guān)鍵任務(wù)時(shí)延低于5毫秒;UPF下沉部署:將用戶面功能(UPF)下沉至園區(qū)邊緣,使數(shù)據(jù)本地化處理率達(dá)85%,年節(jié)省帶寬費(fèi)用超千萬元;應(yīng)用生態(tài)聚合:開放邊緣平臺(tái)的API接口,吸引30余家ISV入駐,形成涵蓋安防、能源管理、物流優(yōu)化的應(yīng)用生態(tài)。此外,倍聯(lián)德還與英特爾、英偉達(dá)等芯片廠商成立聯(lián)合實(shí)驗(yàn)室,共同研發(fā)適用于邊緣場景的異構(gòu)計(jì)算架構(gòu)。其新推出的24重心Atom架構(gòu)緊湊型邊緣服務(wù)器,功耗只350W,卻可支持8路1080P視頻流實(shí)時(shí)分析,使中小企業(yè)單條生產(chǎn)線部署成本從15萬元降至3.8萬元。廣東pcdn邊緣計(jì)算算法學(xué)術(shù)界正在研究基于神經(jīng)形態(tài)芯片的邊緣計(jì)算架構(gòu),以模擬人腦的高效信息處理方式。

在工業(yè)物聯(lián)網(wǎng)與5G技術(shù)深度融合的當(dāng)下,邊緣計(jì)算憑借其低延遲、高可靠的特性,成為智能制造、智能交通、能源管理等領(lǐng)域的重要基礎(chǔ)設(shè)施。然而,隨著邊緣節(jié)點(diǎn)數(shù)量呈指數(shù)級增長,其分散部署、資源受限、協(xié)議異構(gòu)等特點(diǎn),正引發(fā)數(shù)據(jù)泄露、設(shè)備劫持、拒絕服務(wù)攻擊等新型安全威脅。據(jù)《邊緣計(jì)算安全白皮書》統(tǒng)計(jì),2024年全球邊緣計(jì)算安全事件同比增長137%,其中工業(yè)場景占比達(dá)42%。在此背景下,構(gòu)建多層次防護(hù)體系已成為行業(yè)共識,而深圳市倍聯(lián)德實(shí)業(yè)有限公司憑借其在邊緣計(jì)算領(lǐng)域的深厚積累,正為行業(yè)提供可復(fù)制的安全解決方案。
自動(dòng)駕駛系統(tǒng)依賴激光雷達(dá)、攝像頭、毫米波雷達(dá)等多模態(tài)傳感器,每輛車每秒產(chǎn)生超過10GB原始數(shù)據(jù)。若采用云端集中處理模式,數(shù)據(jù)需經(jīng)4G/5G網(wǎng)絡(luò)上傳至數(shù)據(jù)中心,再返回控制指令,端到端延遲普遍超過200毫秒。某頭部車企測試數(shù)據(jù)顯示,在時(shí)速120公里的場景下,200毫秒延遲意味著車輛將多行駛6.7米,這足以決定一場事故的生死。此外,網(wǎng)絡(luò)帶寬限制進(jìn)一步加劇矛盾。以城市路口場景為例,單路口若部署10輛自動(dòng)駕駛車輛,每車上傳8K視頻流,總帶寬需求將突破10Gbps,遠(yuǎn)超現(xiàn)有5G基站承載能力。更嚴(yán)峻的是,隧道、地下停車場等弱網(wǎng)環(huán)境可能導(dǎo)致數(shù)據(jù)中斷,使云端決策系統(tǒng)徹底失效。多接入邊緣計(jì)算(MEC)通過運(yùn)營商網(wǎng)絡(luò)部署邊緣節(jié)點(diǎn),為移動(dòng)應(yīng)用提供低時(shí)延支持。

倍聯(lián)德E500系列機(jī)架式邊緣服務(wù)器,針對工業(yè)場景深度優(yōu)化:異構(gòu)計(jì)算架構(gòu):集成Intel?Xeon?D系列處理器與NVIDIA Jetson AGX Orin GPU,支持16路4K視頻實(shí)時(shí)分析,算力密度較通用方案提升3倍。低功耗設(shè)計(jì):采用液冷技術(shù),單機(jī)柜功率密度提升至50kW,能耗降低40%,年節(jié)省電費(fèi)超10萬元。模塊化擴(kuò)展:支持PCI-E 4.0高速擴(kuò)展,企業(yè)可根據(jù)需求靈活配置存儲(chǔ)與算力,避免過度投資。在蘇州工業(yè)園區(qū),倍聯(lián)德為某車企部署的邊緣質(zhì)檢系統(tǒng),通過硬件定制化將單節(jié)點(diǎn)成本從15萬元降至8萬元,同時(shí)將圖像處理幀率提升至60fps。量子邊緣計(jì)算的概念提出利用量子糾纏特性實(shí)現(xiàn)超高速并行計(jì)算,但尚處理論階段。緊湊型系統(tǒng)邊緣計(jì)算費(fèi)用
隨著AI芯片性能提升,邊緣計(jì)算將逐步承載更復(fù)雜的深度學(xué)習(xí)模型推理任務(wù)。廣東自動(dòng)駕駛邊緣計(jì)算解決方案
在自動(dòng)駕駛技術(shù)加速落地的進(jìn)程中,一場關(guān)于“數(shù)據(jù)傳輸效率”與“決策時(shí)效性”的博弈正成為行業(yè)重要挑戰(zhàn)。傳統(tǒng)云計(jì)算模式下,車輛傳感器產(chǎn)生的海量數(shù)據(jù)需上傳至云端處理,往返延遲常導(dǎo)致緊急制動(dòng)響應(yīng)滯后數(shù)百毫秒,而這一毫秒級差距在高速行駛場景中可能引發(fā)致命事故。在此背景下,邊緣計(jì)算技術(shù)通過“本地化智能”重構(gòu)數(shù)據(jù)處理范式,為自動(dòng)駕駛系統(tǒng)提供了低延遲、高可靠的實(shí)時(shí)決策支持。作為國家高新的技術(shù)企業(yè),深圳市倍聯(lián)德實(shí)業(yè)有限公司憑借其在邊緣計(jì)算領(lǐng)域的深厚積累,正成為推動(dòng)這一技術(shù)變革的關(guān)鍵力量。廣東自動(dòng)駕駛邊緣計(jì)算解決方案